Ptechhub
  • News
  • Industries
    • Enterprise IT
    • AI & ML
    • Cybersecurity
    • Finance
    • Telco
  • Brand Hub
    • Lifesight
  • Blogs
No Result
View All Result
  • News
  • Industries
    • Enterprise IT
    • AI & ML
    • Cybersecurity
    • Finance
    • Telco
  • Brand Hub
    • Lifesight
  • Blogs
No Result
View All Result
PtechHub
No Result
View All Result

These Startups Are Building Advanced AI Models Without Data Centers

By Wired by By Wired
April 30, 2025
Home AI & ML
Share on FacebookShare on Twitter


Researchers have trained a new kind of large language model (LLM) using GPUs dotted across the world and fed private as well as public data—a move that suggests that the dominant way of building artificial intelligence could be disrupted.

Flower AI and Vana, two startups pursuing unconventional approaches to building AI, worked together to create the new model, called Collective-1.

Flower created techniques that allow training to be spread across hundreds of computers connected over the internet. The company’s technology is already used by some firms to train AI models without needing to pool compute resources or data. Vana provided sources of data including private messages from X, Reddit, and Telegram.

Collective-1 is small by modern standards, with 7 billion parameters—values that combine to give the model its abilities—compared to hundreds of billions for today’s most advanced models, such as those that power programs like ChatGPT, Claude, and Gemini.

Nic Lane, a computer scientist at the University of Cambridge and cofounder of Flower AI, says that the distributed approach promises to scale far beyond the size of Collective-1. Lane adds that Flower AI is partway through training a model with 30 billion parameters using conventional data, and plans to train another model with 100 billion parameters—close to the size offered by industry leaders—later this year. “It could really change the way everyone thinks about AI, so we’re chasing this pretty hard,” Lane says. He says the startup is also incorporating images and audio into training to create multimodal models.

Distributed model-building could also unsettle the power dynamics that have shaped the AI industry.

AI companies currently build their models by combining vast amounts of training data with huge quantities of compute concentrated inside datacenters stuffed with advanced GPUs that are networked together using super-fast fiber-optic cables. They also rely heavily on datasets created by scraping publicly accessible—although sometimes copyrighted—material, including websites and books.

The approach means that only the richest companies, and nations with access to large quantities of the most powerful chips, can feasibly develop the most powerful and valuable models. Even open source models, like Meta’s Llama and R1 from DeepSeek, are built by companies with access to large datacenters. Distributed approaches could make it possible for smaller companies and universities to build advanced AI by pooling disparate resources together. Or it could allow countries that lack conventional infrastructure to network together several datacenters to build a more powerful model.

Lane believes that the AI industry will increasingly look towards new methods that allow training to break out of individual datacenters. The distributed approach “allows you to scale compute much more elegantly than the datacenter model,” he says.

Helen Toner, an expert on AI governance at the Center for Security and Emerging Technology, says Flower AI’s approach is “interesting and potentially very relevant” to AI competition and governance. “It will probably continue to struggle to keep up with the frontier, but could be an interesting fast-follower approach,” Toner says.

Divide and Conquer

Distributed AI training involves rethinking the way calculations used to build powerful AI systems are divided up. Creating an LLM involves feeding huge amounts of text into a model that adjusts its parameters in order to produce useful responses to a prompt. Inside a datacenter the training process is divided up so that parts can be run on different GPUs, and then periodically consolidated into a single, master model.

The new approach allows the work normally done inside a large datacenter to be performed on hardware that may be many miles away and connected over a relatively slow or variable internet connection.



Source link

Tags: ai labArtificial Intelligence
By Wired

By Wired

Next Post
EntropiQ Launches to Deliver First Fully Integrated Quantum Entropy as a Service (QEaaS) for Critical Infrastructure

EntropiQ Launches to Deliver First Fully Integrated Quantum Entropy as a Service (QEaaS) for Critical Infrastructure

Recommended.

ONLY Cynet Delivers 100% Protection and 100% Detection Visibility in the 2024 MITRE ATT&CK Evaluation

ONLY Cynet Delivers 100% Protection and 100% Detection Visibility in the 2024 MITRE ATT&CK Evaluation

December 23, 2024
Speech-To-Text API Market to Reach  Billion by 2024 in the Short Term and  Billion by 2034 Globally, at 15.2% CAGR: Allied Market Research

Speech-To-Text API Market to Reach $5 Billion by 2024 in the Short Term and $21 Billion by 2034 Globally, at 15.2% CAGR: Allied Market Research

May 12, 2025

Trending.

⚡ Weekly Recap: Oracle 0-Day, BitLocker Bypass, VMScape, WhatsApp Worm & More

⚡ Weekly Recap: Oracle 0-Day, BitLocker Bypass, VMScape, WhatsApp Worm & More

October 6, 2025
Cloud Computing on the Rise: Market Projected to Reach .6 Trillion by 2030

Cloud Computing on the Rise: Market Projected to Reach $1.6 Trillion by 2030

August 1, 2025
Stocks making the biggest moves midday: Autodesk, PayPal, Rivian, Nebius, Waters and more

Stocks making the biggest moves midday: Autodesk, PayPal, Rivian, Nebius, Waters and more

July 14, 2025
The Ultimate MSP Guide to Structuring and Selling vCISO Services

The Ultimate MSP Guide to Structuring and Selling vCISO Services

February 19, 2025
Translators’ Voices: China shares technological achievements with the world for mutual benefit

Translators’ Voices: China shares technological achievements with the world for mutual benefit

June 3, 2025

PTechHub

A tech news platform delivering fresh perspectives, critical insights, and in-depth reporting — beyond the buzz. We cover innovation, policy, and digital culture with clarity, independence, and a sharp editorial edge.

Follow Us

Industries

  • AI & ML
  • Cybersecurity
  • Enterprise IT
  • Finance
  • Telco

Navigation

  • About
  • Advertise
  • Privacy & Policy
  • Contact

Subscribe to Our Newsletter

  • About
  • Advertise
  • Privacy & Policy
  • Contact

Copyright © 2025 | Powered By Porpholio

No Result
View All Result
  • News
  • Industries
    • Enterprise IT
    • AI & ML
    • Cybersecurity
    • Finance
    • Telco
  • Brand Hub
    • Lifesight
  • Blogs

Copyright © 2025 | Powered By Porpholio